Krishna Kumar, kks32@cam.ac.uk
University of Cambridge
Kenichi Soga, soga@berkeley.edu
University of California, Berkeley.
Smagorinsky model (LES):
$\nu_{s}(x,t)=(C_s \Delta)^2\sqrt{S_{ij}S_{ij}} \mbox{ ; } S_{ij}=\frac{1}{2}(\frac{\partial u_i}{\partial x_j}+\frac{\partial u_j}{\partial x_i})$
Dirichlet boundary conditions constrain the pressure/density at the boundaries (Zou and He, 1997)
$\rho_0=\sum_{a}f_{a} \mbox{ and } \textbf{u}=\frac{1}{\rho_0}\sum_{a}f_{a}$
Selborne case study (Alonso et al., 2016)
John Wong, University of Cambridge
Krishna Kumar, kks32@cam.ac.uk
www.cb-geo.com